Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion.

نویسندگان

  • Nicolas Carrasco
  • Yuri Buzin
  • Elizabeth Tyson
  • Elizer Halpert
  • Zhen Huang
چکیده

We report here the solid phase synthesis of RNA and DNA oligonucleotides containing the 2'-selenium functionality for X-ray crystallography using multiwavelength anomalous dispersion. We have synthesized the novel 2'-methylseleno cytidine phosphoramidite and improved the accessibility of the 2'-methylseleno uridine phosphoramidite for the synthesis of many selenium-derivatized DNAs and RNAs in large scales. The yields of coupling these Se-nucleoside phosphoramidites into DNA or RNA oligonucleotides were over 99% when 5-(benzylmercapto)-1H-tetrazole was used as the coupling reagent. The UV melting study of A-form dsDNAs indicated that the 2'-selenium derivatization had no effect on the stability of the duplexes with the 3'-endo sugar pucker. Thus, the stems of functional RNA molecules with the same 3'-endo sugar pucker appear to be the ideal sites for the selenium derivatization with 2'-Se-C and 2'-Se-U. Crystallization of the selenium-derivatized oligonucleotides is also reported here. The results demonstrate that this 2'-selenium functionality is suitable for RNA and A-form DNA derivatization in X-ray crystallography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Structure and Function Studies of Selenium and Tellurium Derivatized Nucleic Acids

Nucleic acids play important roles in living systems by storing and transferring genetic information and directing protein synthesis. Recently, it was found that nucleic acids can catalyze chemical and biochemical reactions similar to protein enzymes. In addition, they can also serve as drug targets for the treatment of deadly diseases such as AIDS and cancers. As a result, the 3D structure stu...

متن کامل

Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD.

We have developed a route for the synthesis of 2'-selenium uridine analogues and oligonucleotides containing selenium labels, and have demonstrated for the first time a new strategy to covalently derivatize nucleotides with selenium for phase and structure determination in X-ray crystallography.

متن کامل

Synthesis, Structure, Function and Biomedical Studies of Nucleic Acid Derivatized with Selenium

Nucleic acids are macromolecules in cells for storing and transferring genetic information. Moreover, nucleic acids, especially RNAs, can fold into well-defined 3D structures and catalyze biochemical reactions. As ubiquitous biological molecules in all living systems, nucleic acids are important drug targets, and they can also be used in diagnostics and therapeutics. Structural information of n...

متن کامل

Selenium Derivatization of Nucleic Acids for Phase and Structure Determination in Nucleic Acid X-ray Crystallography

Selenium derivatization (via selenomethionine) of proteins for crystal structure determination via MAD phasing has revolutionized protein X-ray crystallography. It is estimated that over two thirds of all new crystal structures of proteins have been determined via Se-Met derivatization. Similarly, selenium functionalities have also been successfully incorporated into nucleic acids to facilitate...

متن کامل

Synthesis of selenium-derivatized nucleosides and oligonucleotides for X-ray crystallography.

We report here the synthesis of nucleoside and oligonucleotide analogs containing selenium, which serves as an anomalous scattering center to enable MAD phase determination in nucleotide X-ray crystallography. We have developed a phase transfer approach to introduce the selenium functionality in A, C, G, T, and U nucleosides at 5'-positions. In the incorporation of the selenium functionality, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2004